International Spring School on Forefront Alloys and Advanced Materials for Extreme Conditions

15 – 17 May 2017

Sardinia, Italy

Best available methods for developing ceramic coatings for high temperature applications

Adrian Mihail MOTOC, Arcadii SOBETKII, Radu-Robert PITICESCU

National Research and Development Institute for Nonferous and Rare Metals
102 Biruintei Blvd., Pantelimon, Ilfov, Romania

e-mail: amotoc@imnr.ro
When choosing a material for an application it is essential to know what materials are available and how well they are suited to that specific purpose.

!!! WORKING ENVIRONMENT !!!

The same application working in different environments may require totally different materials.

It is foreseen a wide range of future opportunities related to high-temperature and harsh environment applications. The number of materials that can be used in extreme environments is very limited because they are restricted by some basic requirements.
Introduction

Understanding the behaviour of materials operating under various extreme environments (high/low temperature, thermal shock, pressure, corrosion, erosion, radiation ...) opens new opportunities in many technological fields: automotive, aerospace and defence industry, energy generation and storage, sensors, tools and machinery, chemistry and metallurgy, biotechnologies & biomaterials, etc.

In order to get closer to the intrinsic limits of the materials performance it is required:

• A deep understanding of atomic and molecular origins, on how the extreme environment affects the physical and chemical processes that occur in the volume or at the surface of different existing / newly developed material systems;

• Developing new methods for obtaining and characterizing bulk material systems or coatings for their rational use and for reducing the dependence on critical materials.
Materials in service under extreme environments:

a) metallic: refractory metals, stainless steels, high-temperature alloys.

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>well studied</td>
<td>corrosion problems</td>
</tr>
<tr>
<td>commercially available</td>
<td>critical materials</td>
</tr>
</tbody>
</table>

b) ceramic: UHTC (ultra high temperature ceramics), oxide materials, composites.

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>less corrosion</td>
<td>less studied</td>
</tr>
<tr>
<td>low heat transfer</td>
<td>structure integrity</td>
</tr>
<tr>
<td>replace critical materials</td>
<td></td>
</tr>
</tbody>
</table>
The most important applications for oxide materials in extreme environments are Thermal Barrier Coatings (TBC) and corrosion resistive coatings.

TBCs are multi-layered and multi-material coating systems used to lend thermal protection from hot gases in turbines and engines, and thus lower the surface temperature of the substrate components (Bose, 2007; Feuerstein et al., 2008). Conventional TBC systems consist of three layers over the superalloy substrate; a metallic bond coat (BC), an intermediate thermally grown oxide (TGO), and a ceramic top coat (TC). All these layers have distinct physical, mechanical, and thermal properties, which are strongly affected by the processing conditions (Karaoglanli, Ogawa, Turk, & Ozdemir, 2013).
Materials

The number of materials that can be used in extreme environments is very limited because they are restricted by some basic requirements:

- High melting point;
- Chemical inertness;
- Low thermal conductivity;
- No phase transformation between room temperature and operation temperature;
- Good adherence to the metallic substrate;
- Thermal expansion match with the metallic substrate;
- Low sintering rate of the porous microstructure.
Oxide coatings for extreme environments
(advantages and disadvantages of these materials compared with YSZ)

<table>
<thead>
<tr>
<th>Materials</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>High corrosion-resistance</td>
<td>Phase transformation (1273 K)</td>
</tr>
<tr>
<td></td>
<td>High hardness</td>
<td>High thermal conductivity</td>
</tr>
<tr>
<td></td>
<td>Not oxygen-transparent</td>
<td>Very low thermal expansion coefficient</td>
</tr>
<tr>
<td>7-8 YSZ</td>
<td>High thermal expansion coefficient</td>
<td>Sintering above 1473 K</td>
</tr>
<tr>
<td></td>
<td>Low thermal conductivity</td>
<td>Phase transformation (1443 K)</td>
</tr>
<tr>
<td></td>
<td>High thermal shock resistance</td>
<td>Corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxygen-transparent</td>
</tr>
<tr>
<td>YSZ + CeO2</td>
<td>High thermal expansion coefficient</td>
<td>Increased sintering rate</td>
</tr>
<tr>
<td></td>
<td>Low thermal conductivity</td>
<td>CeO₂ precipitation (> 1373 K)</td>
</tr>
<tr>
<td></td>
<td>High thermal shock resistance</td>
<td>CeO₂-loss during spraying</td>
</tr>
<tr>
<td></td>
<td>High corrosion-resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less phase transformation between m and t than YSZ</td>
<td></td>
</tr>
</tbody>
</table>

Oxide coatings for extreme environments
(advantages and disadvantages of these materials compared with YSZ)

<table>
<thead>
<tr>
<th>Materials</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| La2Zr2O7 | Very high thermal stability
Low thermal conductivity
Low sintering
Not oxygen-transparent | Relatively low thermal expansion coefficient |
| Mullite | High corrosion-resistance
Low thermal conductivity
Good thermal-shock resistance below 1273 K
Not oxygen-transparent | Crystallization (1023-1273 K)
Very low thermal expansion coefficient |
| Silicates | Cheap, readily available
High corrosion-resistance | Decomposition into ZrO2 and SiO2 during thermal spraying
Very low thermal expansion coefficient |

In general, deposition processes may principally be divided into two groups:

- those involving droplet transfer such as plasma spraying, arc spraying, wire-explosion spraying, and detonation gun coating;
- those involving an atom-by-atom transfer mode such as the PVD processes of evaporation, cathodic arc deposition and sputtering, chemical vapor deposition (CVD), and electrodeposition.

The main disadvantage of the droplet transfer process is the porosity in the final deposit, which affects the properties.
Deposition processes

There are three steps in the formation of any deposit:

1. Synthesis of the material to be deposited:
 (a) transition from a condensed phase (solid or liquid) to the vapor phase
 (b) for deposition of compounds, a reaction between the components of the compound, some of which may be introduced into the chamber as a gas or vapor.

2. Transport of the vapors between the source and substrate.

3. Condensation of vapors (and gases) followed by film nucleation and growth.
Main deposition processes used for obtaining oxide coatings

<table>
<thead>
<tr>
<th>Criteria for deposition processes</th>
<th>Deposition processes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PVD</td>
<td>CVD</td>
<td>Thermal spray</td>
<td></td>
</tr>
<tr>
<td>E-beam evaporation</td>
<td>RF Sputtering</td>
<td>Cathodic arc</td>
<td>PECVD</td>
<td>APS/SPSS</td>
</tr>
<tr>
<td>Mechanism of production of deposition species</td>
<td>Thermal energy</td>
<td>Momentum transfer</td>
<td>Thermal energy</td>
<td>Chemical reaction</td>
</tr>
<tr>
<td>Deposition rate</td>
<td>Can be very high (up to 750000 A/min)</td>
<td>Low</td>
<td>Can be very high</td>
<td>Moderate (200-2500 A/min)</td>
</tr>
<tr>
<td>Deposition species</td>
<td>Atoms & ions</td>
<td>Atoms & ions</td>
<td>Ions</td>
<td>Atoms</td>
</tr>
<tr>
<td>Uniformity for complex shaped objects</td>
<td>Poor, line of sight coverage except by gas scattering</td>
<td>Good, nonuniform, uniform thickness distributions</td>
<td>Good, but nonuniform thickness distribution</td>
<td>Good</td>
</tr>
<tr>
<td>Energy of deposited species</td>
<td>Low (~0.1-0.5 eV)</td>
<td>Can be high (1-100 eV)</td>
<td>Very high</td>
<td>Can be high</td>
</tr>
<tr>
<td>Bombardment of substrate/deposit by inert gas ions</td>
<td>Generally no</td>
<td>Yes or no, depending on geometry</td>
<td>Yes</td>
<td>Possible</td>
</tr>
<tr>
<td>Substrate heating (by external means)</td>
<td>Yes, normally</td>
<td>Yes or no</td>
<td>Yes or no</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Deposition processes

Thermal Spray Methods

- Plasma Spraying (PS)
- Solution Precursor Plasma Spraying (SPPS)
- Flame Spraying (FS)
- High Velocity Oxy-Fuel (HVOF)
- Detonation Gun Spraying (D-Gun)

- Vacuum Plasma Spraying (VPS)
- Suspension Plasma Spraying (SPS)
- Air Plasma Spraying (APS)
- Low Pressure Plasma Spraying (LPPS)

- LPPS- Thin Films
- Plasma Spraying Physical Vapor Deposition (PS-PVD)
- Plasma Spraying Chemical Vapor Deposition (PS-CVD)
Deposition processes

From all of these thermal spray methods the APS and SPPS are the most widely used for manufacturing TBC coatings. Solution precursor plasma spray (SPPS) unitizes liquid chemical solutions injected into plasma or combustion jet in place of powder to create coatings. The process is schematically shown in the figure below. A related method is suspension plasma spray (SPS) in which solid particles are suspended in a liquid and injected into the thermal jet.
Chemical Vapor Deposition (CVD) is a process in which the substrate is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired thin film deposit.

CVD is parent to a family of processes whereby a solid material is deposited from a vapor by a chemical reaction occurring on or in the vicinity of a normally heated substrate surface. The resulting solid material is in the form of a thin film, powder, or single crystal. By varying experimental conditions, including substrate material, substrate temperature, and composition of the reaction gas mixture, total pressure gas flows, etc., materials with a wide range of physical, tribological, and chemical properties can be grown. A characteristic feature of the CVD technique is its excellent throwing power, enabling the production of coatings of uniform thickness and properties with a low porosity even on substrates of complicated shape. Another important feature is the capability of localized, selective deposition, on patterned substrates.
In thermally activated CVD (TACVD), the deposition is initiated and maintained by heat. However, photons, electrons, and ions, as well as a combination of these (plasma activated CVD), may induce and maintain CVD reactions.

There are three PVD processes, namely:

- sputtering.
- cathodic arc deposition
- evaporation

In the sputtering process, positive gas ions (usually argon ions) produced in a glow discharge (gas pressure 20-150 mtorr) bombard the target material (also called the cathode). dislodging groups of atoms which then pass into the vapor phase and deposit onto the substrate.

In Cathodic arc deposition (Arc-PVD) the target material is a cathode which is vaporized with the help of an electric arc.
Deposition processes

In the **evaporation process**, vapors are produced from a material located in a source which is heated by direct resistance, radiation, eddy currents, e-beam, laser beam, or an arc discharge. The process is usually carried out in vacuum (typically 10^{-6} torr) so that the evaporated atoms undergo an essentially collisionless line-of-sight transport prior to condensation on the substrate.

![Vacuum evaporation system with e-beam heating.](image)

It must be noticed that the deposit thickness is greatest directly above the center-line of the source and decreases away from it.
Experimental results

IMNR infrastructure: EB-PVD thin film coating equipment
Experimental results

BaZrO3 coating deposited by EB-PVD on nimonic substrate - HR-SEM micrographs
Experimental results

NiCr+BaZrO₃ coating deposited by EB-PVD on nimonic substrate - HR-SEM micrographs

International Spring School on Forefront Alloys and Advanced Materials for Extreme Conditions, Sardinia, Italy, 15 to 17 May 2017
Experimental results

NiCr+BaZrO3 coating (cross-section) deposited by EB-PVD on silicon substrate - SEM micrograph
Experimental results

NiCr+BaZrO3 coating deposited by EB-PVD on silicon substrate

AFM measurement

All SEM and AFM investigations presented, were performed at University of Burgos - ICCRAM (Spain)
Conclusions

Different oxide materials with various structures are available to obtain coatings with designed properties for extreme environments applications. The best available technologies are those that allow to control in a reproducible and convenient way the structure, properties and adhesion of the coatings assuring an economical implementation in the desired applications.

For these materials thermal spraying and EB-PVD seems to be the most preferred method.
References

References

The ICARUS project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 713514.

The SUPERMAT project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 692216.

This document and all information contained herein is the sole property of the ICARUS and SUPERMAT Consortiums or the company referred to in the slides. It may contain information subject to Intellectual Property Rights. No Intellectual Property Rights are granted by the delivery of this document or the disclosure of its content. Reproduction or circulation of this document to any third party is prohibited without the written consent of the author(s).

The statements made herein do not necessarily have the consent or agreement of the ICARUS and SUPERMAT consortiums and represent the opinion and findings of the author(s).

The dissemination and confidentiality rules as defined in the Consortium agreement apply to this document.

All rights reserved ©